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Evidence for topological nonequilibrium in magnetic configurations
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1Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637
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We use direct numerical simulations to study the evolution, or relaxation, of magnetic configurations to an
equilibrium state. We use the full single-fluid equations of motion for a magnetized, nonresistive, but viscous
fluid; and a Lagrangian approach is used to obtain exact solutions for the magnetic field. As a result, the
topology of the magnetic field remains unchanged, which makes it possible to study the case of topological
nonequilibrium. We find two cases for which such nonequilibrium appears, indicating that these configurations
may develop singular current sheets.

PACS number~s!: 52.30.Bt, 47.65.1a, 52.65.Kj
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I. INTRODUCTION

Formation of singularities, or current sheets, is one of
striking features of astrophysical as well as tokamak plas
@1#. Such singularities are key to understanding active p
nomena related to fast magnetic-field reconnection@2,3#. For
example, fast dynamos rely on fast reconnection
magnetic-field lines@4,5#. Despite their importance, key is
sues related to current sheet formation are still not well
derstood. Supposing, e.g., that they are formed due to in
bilities, one has to assume that fluid dynamical processes
able to slowly deform equilibrium magnetic-field configur
tions ~and thereby build up regions of field gradients! with-
out significant reconnection until a marginal state is reach
At this threshold, instability-driven reconnection would th
lead to release of the stored free energy on the~observed!
time scales thought to be too short to be consistent with,
example, Sweet-Parker reconnection@3,4#. However, it has
been long recognized@6# that in the presence of reconne
tion, it is not obvious how one can attain~meta!stable con-
figurations which store significant free energy. Furthermo
it is not clear why reconnection would not simply return t
system to the marginal state, thus releasing only a small f
tion of the available free energy.

In this paper, we explore one possible solution to th
puzzles: We consider specific magnetic-field configurati
which could arise from a slow evolution of~stable!
quasiequilibria, and then examine their subsequent~un-
forced! evolution. Our aim is to show that there exist co
figurations that evolve initially on the slow rate, but that c
reach a point at which spontaneous current sheet forma
occurs. These configurations have been referred to as ‘‘to
logical nonequilibria’’ ~TN! @2,7#, and lead to situations in
which the topology of the field is such that in a relax
equilibrium state it inevitably contains discontinuities. T
results in spontaneous reconnection, because no ext
forces are involved; and in the cases we shall examine,
result is that extraction of all of the available free ener
becomes possible.

Finally, we note that an important aspect of this proble
relates to the fact that there is a direct correspondence
tween magnetostatic equilibria and steady Euler flows,
pointed out by Moffatt@8#; this problem is therefore closel
PRE 621063-651X/2000/62~1!/1245~7!/$15.00
e
as
e-

f

-
ta-
re

d.

r

,

c-

e
s

on
o-

nal
he

e-
s

connected to the possible formation of singularities in hyd
dynamics; see also@9,10#.

II. DESCRIPTION OF THE APPROACH

A. The idea of topological nonequilibrium

The main ideas of topological nonequilibrium~hence-
forth, TN! were formulated rigorously by Moffatt@8–10#.
Consider an ideally conductive viscous~ICV! flow. We re-
strict ourselves to incompressible flows. Starting with init
magnetic fieldB(x,t50)5B0(x) of arbitrary topology, one
expects that such a configuration will relax to a static sta
with zero velocity field, and nontrivial magnetic fieldBE .
The latter configuration is then called ‘‘topologically acce
sible’’ because the field’s topology does not change dur
this frozen-in evolution. If this relaxed equilibrium state co
tains discontinuities, then all of the states in the evolution
referred to as TN. It may be expected in a realistic situati
when small but finite resistivityh is taken into account, tha
these discontinuities evolve into finite-width current shee
resulting in efficient reconnection and dissipation of t
magnetic field. Unfortunately, there are only a few spec
cases for which it is possible to demonstrate that TN ex
@11#. In this paper, we restrict ourselves to analysis of tw
dimensional configurations, and study the evolution of t
generic field configurations which can lead to TN.

Of course, in general, there is no reason that a given
tial configuration is at equilibrium. However, one would no
mally expect that, after relaxation, such a configurat
would evolve to attain a smooth equilibrium, and that t
magnetic-field evolution subsequently stops. Some ini
field topologies, however, cannot possibly relax to a smo
equilibrium, resulting in TN. It is obvious that use of th
word ‘‘nonequilibrium’’ is not strictly correct, because in th
final state the fieldis at equilibrium as long as the diffusivity
vanishes exactly. However, in the spirit of maintaining
already existing tradition, we retain this terminology.

As a result of relaxation, the magnetic field will reach
equilibrium state. In two dimensions,Bx5]yA, By52]xA,
and the fluxA obeys in equilibrium the equation

¹2A524p
dP~A!

dA
, ~1!
1245 ©2000 The American Physical Society
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whereP5p1Bz
2/(8p), p5p(A), andBz5Bz(A); see, e.g.,

@12#. As an aside, we note that if the pressurep can be
neglected, then this equilibrium is force-free; this may oc
in specific applications such as in the solar corona. In ad
tion, the total pressureP @Eq. ~1!# ought to substantially ex
ceed the transverse magnetic energyBx

21By
2 in order to jus-

tify the incompressibility assumption for the evolution to th
equilibrium state.

Equation~1! is trivially satisfied in the one-dimensiona
case. To start with, suppose thatA is a function ofx only,
corresponding to straight field lines parallel to they axis. An
initial arbitrary distribution is generally not at equilibrium
However, after relaxation, the field reaches the well-kno
equilibrium

By~x!2

8p
1P~x!5const, ~2!

automatically satisfying Eq.~1!. The same is true for axisym
metric configurations, whenA5A(r ), and the field consists
of concentric circles.

Going to two dimensions complicates the problem cons
erably. Consider first a configuration with closed nested fi
lines, so thatA(x,y) has one maximum~minimum!. The
configuration is depicted in Fig. 1, and we will refer to
below as ‘‘caseA.’’ Of course, the axisymmetric configura
tion is topologically accessible from this configuration, a
therefore it can reach equilibrium. The question, however
whether this equilibrium is unique.

If there exists a magnetostatic equilibrium with typeA
field topology with essentially arbitrary field line geometr
e.g., with elliptic field lines, as in Fig. 1, then we wou
expect an arbitrary type-A configuration to relax to this equi
librium without dramatic changes in its geometry. Howev
suppose this equilibrium exists only in axisymmetric for
i.e., can only be realized with concentric~field line! circles;
then, if this configuration were placed between magne
‘‘walls’’ ~such as regions of strong magnetic fields in t
solar corona, or solar wind!, as in Fig. 2~a!, we would expect
the formation of discontinuities~because it would not be
possible to evolve to the equilibrium state!. Furthermore, if

FIG. 1. Sketch of the type-A topology configuration: closed
nested magnetic-field lines. The dashed line here, as in all the
ures below, corresponds to a field line with vanishing magne
field strength.
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we allowed for nonvanishing diffusion, then such a config
ration would not settle down untilall magnetic lines are
reconnected, and the bubble seen in Fig. 2 disappears
tirely.

It is useful to expand slightly on the astrophysical re
evance of this case. Our point is that ‘‘caseA’’ shown in Fig.
2~a! can be regarded as an abstraction of a commonly
pected field configuration in the solar atmosphere: Cons
the emergence of a magnetic flux tube from the solar inte
to the corona, where it enters a highly conducting medi
already suffused by preexisting magnetic fields. If one
stracts such an emerging flux tube as a rising cylinder, t
the expected field topology in planes perpendicular to
tube axis should be similar to caseA: The nested closed field
lines in such planes then represent the toroidal field com
nent of the emerging flux tube; and the magnetic ‘‘walls
shown in Fig. 2~a! represent the projections in such planes
the magnetic fields of the surrounding magnetized coro
plasma.

The second type of field topology we consider below
what we call typeB; this more complicated topology is
‘‘rosette structure’’@Fig. 3~a!#, which has been investigate
experimentally@13#. In terms of the flux functionA(x,y),
this configuration consists of two maxima, e.g., two ‘‘mou

g-
-

FIG. 2. Ellipse-shaped configuration placed between two h
zontal magnetic walls; the initial configuration was generated
considering two families of~parametric! curves, i.e., straight lines
and ellipses, and joining them as shown in panel~a!. As a result of
evolution of the configuration shown in panel~a!, the field evolves
such that it is pushed to the walls to form discontinuities, as sho
in panel~b!. Dashed lines correspond toB'50. Both panels presen
results of numerical simulations, but only selected field lines
depicted for illustrative purposes.
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tains,’’ surrounded by a pedestal, i.e., two magnetic isla
surrounded by closed magnetic-field lines going around
two islands; the field vanishes outside the zero line. If
type-B topology cannot exist in smooth equilibrium, then
current sheet develops, resulting in efficient reconnection
field lines until all field lines of the islands are reconnecte
and eventually only one island remains, of the topology
the typeA. In contrast, if this kind of topology does exist i
smooth equilibrium, then nothing dramatic would happ
and the configuration would relax to this equilibrium witho
any discontinuities. The astrophysical context in which t
type of configuration may be created is similar to that j
described above: consider the emergence of two adja
twisted solar flux tubes into a nonmagnetized ambient
rona; again, the field structure in a cross section perpend
lar to the tube axes will appear as shown in Fig. 3~a!. Thus,
in both casesA andB, we are dealing with the generic cas
of bounded magnetic flux systems~i.e., systems of magnetic
field lines which lie within a finite bounding surface o
which the field vanishes!, which can be regarded as abstra
tions of, for example, isolated flux tubes emerging into
highly conductive solar corona.

Generally, finding TN states is far from trivial. To illus
trate, let us return to the type-A topology. The axisymmetric
equilibrium solution isnot unique. For example, one ca
construct a solution to Eq.~1!,

A~x,y!5sinkx sinky,

FIG. 3. Simulations for the~initially continuous! rosette struc-
ture, as depicted in panel~a!. As a result of the relaxation, thi
configuration evolves into a field containing a discontinuity b
tween the two magnetic islands, as shown in panel~b!. The pres-
ence of the external zero line~dashed line! is vital for TN.
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depicted in Fig. 4~a!, which has the same topology of fiel
lines as depicted in Fig. 1. This asymmetric field is at eq
librium, so that the general answer to the question
whether, say, elliptic configurations of the form shown
Fig. 1 can be at equilibrium, is affirmative. An analogo
construction can be carried our for the topology of typeB; in
this case, the solution of Eq.~1! can be constructed as

Az5(
n

Aneikx
(n)x1 iky

(n)y,

where (kx
(n))21(ky

(n))25const ~see, e.g.,@16,7#!. This ex-
ample is depicted in Fig. 4~b!; the rosette structure shown
at equilibrium without any discontinuities.

The situation changes if a zero line~a line whereB'

50, B'5$Bx ,By%, and generallyBzÞ0) is present, such a
the dashed line shown in Fig. 1 for the type-A, and in Fig. 3
for the type-B field topology. The zero line possesses tw
remarkable properties. First, the magnetic field remains z

-

FIG. 4. Two examples of field configurations which share t
field topology of the two cases (A andB) we are studying, which
do not have any simple symmetries, but are nevertheless sm
equilibria.~a! TypeA ~marked by the thick line!; ~b! typeB ~rosette
structure, marked by a thick line!.
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on this line in the presence of ICV flow. Thus, if we write th
ideal induction equation in the form

dB

dt
5~B•¹!v,

which in 2D reads

dB'

dt
5~B'•¹!v,

dBz

dt
50, ~3!

it is easy to see that because the left-hand side desc
transport of any fluid element~in particular, of the zero line!
by the motion, and because the right-hand side correspo
to change of the field along the Lagrangian trajectory~and as
the right-hand side vanishes on the zero line!, this equation
will preserve the propertyB'50 on the zero line.

Second, if the zero line has a constant~along the line!
curvature, e.g., is a straight line or a circle, and if the field
also analytical, then the entire configuration will have t
same geometry as the zero line. In other words, if the z
line is a straight line, then all other field lines are straight
well; alternatively, if the zero line is a circle, then the an
lytical equilibrium configuration consists of concentr
circles. The proof is easily constructed by expandingA(x,y)
in the vicinity of the zero line@12#. Note, however, that the
constant curvature zero line is a special case~although it can
be regarded as a representation of the emergence of mag
flux on, for example, the solar surface, in which geome
cally symmetric flux bundles straddle the separating ‘‘neu
line’’ !; in general, the zero line is arbitrary in shape,
shown in Figs. 1–3. Nevertheless, we may conjecture
the zero line imposes a severe constraint on the geom
That is, we conjecture that the existence of this line result
unique~smooth! solutions of Eq.~1! in the form of magnetic-
field lines with constant curvature@12#.

One of the considerations in favor of this conjecture is
follows. Without loss of generality,A[0 outside the con-
figuration, and thusA50 on the boundary~whose shape is a
yet unspecified!, corresponding to the Dirichlet problem fo
Eq. ~1!. On the other hand, becauseBx5By50 on the same
boundary, we have]nA50, corresponding to a Neuman
problem. The problem is thus overconstrained; and
would expect this to lead to degeneracy of the solution. T
is, these specific boundary conditions are expected to res
the shape of the boundary itself, and thus in turn to rest
the topology of possible equilibria. Although the bounda
conditions are specified, and the problem is thus rigorou
formulated, the above statement regarding the overc
strained nature of our problem nevertheless has not b
shown to be useful in constructing a formal mathemati
proof concerning the geometry of the configuration in t
presence of a zero line. Formally, it is easier to discard
TN for a given topology by direct construction of a solutio
with needed properties. Generally, it is not clear at all how
construct a formal proof that the only solution of Eq.~1! with
boundary conditionB'50 for the type-A topology is unique,
and axisymmetric, thus defining the shape of the bound
itself. It is even less clear how to prove that there is
smooth solution for the type-B topology, assuming that thi
statement is true.
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Note that one can simply produce artificial discontinuitie
but these are irrelevant to our discussion. To illustrate, s
pose that we place superconductive walls at the location
the thick lines in both panels of Fig. 4. In that case, t
configurations will be at equilibrium~for both type-A and -B
topologies!, and the field will be smooth everywhere exce
at the boundaries~where the field jumps from a finite valu
just outside the walls to zero at the walls in order to meet
boundary condition of zero field within the superconducti
walls!. This type of discontinuity is irrelevant to the astro
physical problem we are aiming at, and we therefore do
discuss it any further.

Thus, the ideally conductive flow does allow magnet
field discontinuities and discontinuities in current distrib
tions. However, studying the current sheet formation,
should not allow them to be present at the very beginni
that is, the initial configuration should not contain magne
discontinuities. This kind of configuration, with zero line
i.e., localized in space, and with nontrivial symmetry, can
easily constructed analytically. For example,

A~x,y!5~sinkxx sinkyy!2, ~4!

for 0<x<p/kx , 0<y<p/ky , and A(x,y)[0 outside this
domain. Clearly,A(x,y)50 andBx5By50 on the bound-
ary, although the current experiences a jump. In order
avoid this, consider

A~x,y!5~sinkxx sinkyy!3, ~5!

then the current also goes to zero on the boundary. Howe
as the jump of the current is allowed even at the beginning
the process, the configuration~4! is satisfactory for our
needs. The topology of both Eqs.~4! and ~5! coincides with
the A type, depicted in Fig. 1 or Fig. 4~a!. One can apply
continuous deformations in the plane to this poten
A(x,y), and still retain the desired property thatB50 on the
boundary@see Eq.~3!#. It is easy to check that neither Eq.~4!
nor Eq.~5! satisfies the equilibrium condition~1!. The non-
trivial question is, however, if any if these transformatio
~except the axisymmetric one! can be at equilibrium.

B. Description of the solution method

One of the powerful ways to study the formation of cu
rent sheets is via numerical simulation. However, in nume
cal simulations the Lundquist number,S5cAL/h (cA the
Alfvén speed andL the characteristic length!, which is criti-
cal for this problem, is far below that corresponding to v
ues encountered in natural systems, viz., under astrophy
conditions@3#. WhenS is not sufficiently large, the separa
tion between typical reconnection times and typical fluid d
namical times may not be large; it is therefore difficult
interpret realistic resistive calculations in the context of
problem in which current sheet formation is to occur witho
topological changes. On the other hand, numerical sche
which attempt to circumvent this problem by solving th
ideal MHD equations suffer from the difficulty that suc
schemes may be subject to numerical instability, so tha
becomes difficult to distinguish between numerical artifa
and physically correct current sheet formation. When disc
tinuities in the magnetic field appear, traditional numeric
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MHD codes tend to either break down or to introduce a sm
amount of resistivity to broaden the current sheets~so that,
for example, their width is larger than a mesh cell!. In certain
situations, the symmetry of the problem can be exploited
study the approach to the ideal solution, i.e.,h→0, see, e.g.,
@14#. However, typical simulations actually add som
amount of numerical resistivity, as in@10#, so that numerical
solutions of the ideal induction equation correspond to so
tions of that equation with an added effective diffusivity.
studies of reconnection it is known that the specification
boundary conditions on the magnetic field and veloc
~which specify the rate at which magnetic field and plasm
brought into the reconnection layer! may affect the rate of
reconnection. In our simulations, we study spontaneous
mation of singularities by isolating the flux system from t
boundaries. We surround our flux bundle by a~transverse!
field-free region, and we place the boundaries far away fr
the bundle, thereby minimizing the effect of the bounda
conditions on the formation of the current sheets.

We address this issue as a relaxation problem in
framework of ICV flows. Our approach involves a dire
numerical simulation of ICV flows, i.e., solving the set
equations~3! and the momentum equation,

dv

dt
5

]v

]t
1~v•“ !v52

1

r
“p1

1

4pr
$“3B%3B1n“2v,

~6!

with “•v50 @15#. We use a Lagrangian approach to sol
the induction equation~3!, as in@17,5#. More specifically, the
magnetic field inside the region of interest is represented
a large number of field lines; the evolution of the field lin
is then followed using the exact Lundquist solution, i.
knowing the initial strength of the magnetic field on a flu
element connecting two nearby points on a field line,
final strength is proportional to the length of the segment
it is stretched by the motions. We assume for all cases
the magnetic field vanishes on the outermost field line~the
dashed curves shown in the figures!. The number of field
lines which fill the domain is chosen so that the subsequ
field evolution can be followed without leaving gaps in t
final state, i.e., we determine the number of initial field lin
by fixing the spatial resolution of the final state; we discu
this point further immediately below. As an important asid
we note that the initial magnetic field is smooth, implyin
that the current system,j (x,y), which is defined by Am-
pere’s law

“3B5
4p

c
j ,

is smooth as well, i.e., there are no current sheets initial
The momentum equation~6!, in contrast, is solved using

standard finite difference techniques, with finite viscos
However, the requirement of coupling the magnetic-fie
evolution to the momentum equation does lead to a com
cation for computing the Lorentz force. The key issue is t
the momentum equation requires the Lorentz force to
evaluated on a homogeneous spatial grid, while
magnetic-field evolution is given in Lagrangian space. W
resolve this issue by~quadratically! interpolating the Lorentz
ll
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force at each time step onto the homogeneous grid use
the momentum equation~6!; similarly, we use quadratic in-
terpolation from the momentum equation mesh to evalu
the velocity field on the Lagrangian mesh. In order to mi
mize interpolation errors, we fix the number of field line
such that every Eulerian grid domain is pierced by at lea
few field lines throughout the calculation. Note here that
terpolation errors do lead to inaccuracies in the solution
the flow and magnetic fields, but by construction cannot le
to changes in the magnetic-field topology. Note also that
have checked for convergence of the solutions as the sp
resolution of our calculation is increased; our conclusion
that the results presented here do not depend on grid res
tion. Our solution corresponds to the limith→0, in the sense
that the topology is strictly conserved, but with finite visco
ity; thus, the computational scheme we use forces the re
ation to be due solely to viscous damping, and as a con
quence, the field relaxes to an equilibrium state. O
approach has the dual virtues that the boundary condit
for the magnetic field do not need to be specified, and t
the field topology is preserved; it is therefore appropriate
the study of TN.

If the viscosity is large, then Eqs.~3!–~6! describe mono-
tonic relaxation to equilibrium. We can estimate the rela
ation time as follows: from Eq.~6! we find thatv;cA

2L/n
5cASn , whereSn5cAL/n. This viscous regime is realized i
Sn!1. The relaxation time is thentn;L/v5tA /Sn , with
tA5L/cA . In the opposite limiting case,Sn@1, the system
undergoes~strong! Alfvén oscillations (v'cA), with a pe-
riod tA , decaying on a viscous timetn;L2/n5tASn . These
two cases can be jointly described by an interpolation f
mula,

tn5tA~Sn11/Sn!,

from which it follows that the relaxation time is large fo
both limiting cases~in terms oftA!. Thus, optimal relaxation
to equilibrium occurs forSn;O(1); in the simulations, we
used the valueSn55. It is important thatSn not be too large:
An important constraint on the value ofSn is that the simu-
lations remain stable. This constraint is not met ifSn is too
large; because the two dynamical equations are solve
different coordinates@Eq. ~3! in Lagrangian, and Eq.~6! in
Eulerian coordinates#, errors arise from the interpolatio
from one coordinate system to the other, and therefore
calculations make sense only if these errors are damped
ficiently by viscosity.

III. DESCRIPTION OF THE RESULTS

We conducted two series of numerical experiments
caseA. In the first series, we consider the relaxation of th
type of topology without any external field, as depicted
Fig. 1. We explored different initial shapes of the field line
including ellipselike, diamondlike, and other similar config
rations. In addition, for a fixed shape, we explored differe
distributions of the flux functionA(x,y), i.e., different func-
tional dependencesA(s), wheres labels the field lines. The
results are always the same: the field ends up in an ax
symmetric state, provided the field vanishes on the outerm
field line.
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FIG. 5. Profiles of thez current corresponding to~a! the topology of Fig. 2~b!, and to~b! Fig. 3~b! @the field line configurations of Figs
2~b! and 3~b! are reproduced at the bottoms of~a! and~b!, respectively#. The current sheets are represented by negative currents. Due
presence of an external zero line, the total current is zero, and therefore strong and peaked negative current is compensated by
distributed positive current. Note that in panel~a!, the current corresponding to the external field of the magnetic walls changes sign, be
each wall contains two zero lines.
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In another set of experiments, this same configurat
~caseA) is placed between magnetic walls, as in Fig. 2~a!; in
this case, the system always evolves to create discontinu
as in Fig. 2~b!, where the field lines are taken from one
our simulation runs. We see that as the ‘‘bubble’’ evolves
attempts to become axisymmetric, but as it does so,
discontinuities begin to form, as depicted in Fig. 2~b!, see
also Fig. 5~a!. It is interesting to note that, for some initia
conditions, acurrent point is formed, rather than a curren
sheet~or a line in two dimensions!, suggesting that finite
conductivity could presumably result in fast reconnectio
that is, according to the Sweet-Parker mechanism~see, e.g.,
@4#!, the reconnection ratevd;1/l , wherel is the length of
the current sheet, so that a short current sheet speeds u
reconnection.~In the classical Sweet-Parker mechanism,l
5L, andvd5cA /S1/2.!

It is crucial to note here that the evolution we just d
scribed is not forced by the walls; thus, the field and flu
near the walls~i.e., on the wall side of the zero lines! have
the equilibrium property~2!. To see this, note that on th
zero line, the total pressure is continuous. Thus, we co
replace the initial elliptical field configuration~the
‘‘bubble’’ ! lying between the two zero lines with a field-fre
region whose gas pressure exactly balances the total pre
on the wall side of the zero lines. The resulting configurat
is clearly in equilibrium, and makes clear that the walls
not push the bubble, i.e., that the evolution of the bubble
entirely driven by the fact that it is not in equilibrium. Thu
it is as the bubble tries to become axisymmetric, and pus
back the walls, that the two discontinuities are formed.
principle, if the bubble could reach equilibrium with ellips
shaped field lines as in Fig. 2~a!, then it would not even
interact with the walls, and the equilibrium of the who
configuration would be smooth. The field evolution to T
here described, i.e., evolution from an initially smooth st
to a state containing a singularity, is therefore an intrin
n
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property of the initially smooth state, rather than bei
forced by external means.

Consider now the type-B configurations. We again con
ducted two series of experiments. In the first series of
merical experiments, we studied different kinds of initi
states, with different initial field line shapes and with diffe
ent distributionsA(s); in all cases, we again required that th
outermost line must be a zero line, as shown in Fig. 3.
found for the type-B configuration that a field discontinuity
always appeared, as in Fig. 3~b! ~which is taken from one of
our simulations!, no matter what the initial distribution ofA,
or what kind of analytical representation of the initial fie
lines we used.

In the second set of experiments, we simulated the ev
tion of a magnetic field with a different number of field line
The issue is as follows: The magnetic-field gradient ax
50 increases during the evolution, so that the current,“

3B, approaches ad function ~Fig. 5!. It is not possible to
observe this tangential discontinuity because in the sim
tions the field is described via a finite~albeit a very large!
number of field lines~recall @18#!. Our hypothesis is that in
the limit of an infinite number of field linesN→`, the cur-
rent atx50 tends to infinity; in order to test this hypothesi
we increased the numberN ~recall @19#! in a succession of
simulations that were otherwise identical. According to o
hypothesis, we expected the current to grow roughly as 1D,
whereD is the closest distance between theX point and the
nearest field line; the experiments confirmed th
expectation.

IV. CONCLUSION

The fundamental result emerging from our simulations
that the vanishing magnetic field on the outermost field l
imposes strict constraints on the geometry of equilibriu
The type-A topology can be at equilibrium only if it is axi



,
s
er
ct

e
ol
d

e
u
to

de

n
is
in
id
ne
u

-
t t

or-
time

res,

be
nd

nd
et.
sics

A
IC

PRE 62 1251EVIDENCE FOR TOPOLOGICAL NONEQUILIBRIUM IN . . .
symmetric; and therefore, if constrained by external walls
is at TN. Similarly, the type-B rosette structure develop
discontinuities, but only in the presence of an external z
line. The presence of zero lines is thus an important aspe
topological nonequilibria.

Finally, we comment briefly on the applicability of thes
results to astrophysical situations. Observations of the s
atmosphere@20# commonly show topologically unconnecte
magnetic flux systems which are seen to interact~viz.,
emerging flux loops!. In such circumstances, in which on
expects to encounter small but finite resistivity, these fl
systems are initially unlinked, but as they are pushed
gether~and begin to reconnect!, flux linkage is expected to
occur and to lead to a field topology analogous to that
picted in Fig. 2, or to the generic type-B configuration dis-
cussed here. The magnetic flux surrounding these two isla
would be initially weak, and the current sheet which
formed is therefore expected to be weak. However, dur
the course of reconnection, more flux will be pushed outs
the two islands, thus accelerating the process of recon
tion. This process may therefore be self-accelerating, res
ing in final ~spontaneous! reconnection; preliminary numeri
cal simulations of a resistive case of this sort suggest tha
ys
,

ld
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ar

x
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ds

g
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he

reconnection ratevd scales ascA /Sa, wherea is a small
power,a;O(0.1) @21#. If confirmed, it would imply that the
reconnection is fast enough to satisfy the observed~solar!
constraints on reconnection times.~Recall that while the
Sweet-Parker reconnection time for typical parameters c
responding to the solar corona is about three years, the
corresponding tovd5cA /S0.1 is only 30 min, which is com-
parable to the energy release time scale for large solar fla
related to the so-called ‘‘long-enduring’’ events@3#.! There-
fore, the two topologies depicted in Figs. 2 and 3 may
regarded as generic examples of ‘‘fast’’ reconnection a
activity in magnetically active astrophysical systems.
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