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Evidence for topological nonequilibrium in magnetic configurations
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We use direct numerical simulations to study the evolution, or relaxation, of magnetic configurations to an
equilibrium state. We use the full single-fluid equations of motion for a magnetized, nonresistive, but viscous
fluid; and a Lagrangian approach is used to obtain exact solutions for the magnetic field. As a result, the
topology of the magnetic field remains unchanged, which makes it possible to study the case of topological
nonequilibrium. We find two cases for which such nonequilibrium appears, indicating that these configurations
may develop singular current sheets.

PACS numbgs): 52.30.Bt, 47.65t+a, 52.65.K]

[. INTRODUCTION connected to the possible formation of singularities in hydro-
dynamics; see als®,10].

Formation of singularities, or current sheets, is one of the
striking features of astrophysical as well as tokamak plasmas Il. DESCRIPTION OF THE APPROACH
[1]. Such singularities are key to understanding active phe-
nomena related to fast magnetic-field reconnedtih]. For
example, fast dynamos rely on fast reconnection of The main ideas of topological nonequilibriuihence-
magnetic-field lineg4,5]. Despite their importance, key is- forth, TN) were formulated rigorously by Moffatt8—10].
sues related to current sheet formation are still not well unConsider an ideally conductive viscod€V) flow. We re-
derstood. Supposing, e.g., that they are formed due to inst&trict ourselves to incompressible flows. Starting with initial
bilities, one has to assume that fluid dynamical processes areagnetic fieldB(x,t=0)=Bgy(x) of arbitrary topology, one
able to slowly deform equilibrium magnetic-field configura- expects that such a configuration will relax to a static state,
tions (and thereby build up regions of field gradiemigth-  with zero velocity field, and nontrivial magnetic fieBk .
out significant reconnection until a marginal state is reachedlhe latter configuration is then called “topologically acces-
At this threshold, instability-driven reconnection would then sible” because the field's topology does not change during
lead to release of the stored free energy on (teservedd  this frozen-in evolution. If this relaxed equilibrium state con-
time scales thought to be too short to be consistent with, fotains discontinuities, then all of the states in the evolution are
example, Sweet-Parker reconnecti@4]. However, it has referred to as TN. It may be expected in a realistic situation,
been long recognizefb] that in the presence of reconnec- when small but finite resistivity; is taken into account, that
tion, it is not obvious how one can attajmetastable con- these discontinuities evolve into finite-width current sheets,
figurations which store significant free energy. Furthermoreresulting in efficient reconnection and dissipation of the
it is not clear why reconnection would not simply return the magnetic field. Unfortunately, there are only a few special
system to the marginal state, thus releasing only a small fracases for which it is possible to demonstrate that TN exists
tion of the available free energy. [11]. In this paper, we restrict ourselves to analysis of two-

In this paper, we explore one possible solution to thesalimensional configurations, and study the evolution of two
puzzles: We consider specific magnetic-field configurationgeneric field configurations which can lead to TN.
which could arise from a slow evolution ofstable Of course, in general, there is no reason that a given ini-
quasiequilibria, and then examine their subsequ@mt- tial configuration is at equilibrium. However, one would nor-
forced evolution. Our aim is to show that there exist con- mally expect that, after relaxation, such a configuration
figurations that evolve initially on the slow rate, but that canwould evolve to attain a smooth equilibrium, and that the
reach a point at which spontaneous current sheet formatiomagnetic-field evolution subsequently stops. Some initial
occurs. These configurations have been referred to as “topdield topologies, however, cannot possibly relax to a smooth
logical nonequilibria” (TN) [2,7], and lead to situations in equilibrium, resulting in TN. It is obvious that use of the
which the topology of the field is such that in a relaxedword “nonequilibrium” is not strictly correct, because in the
equilibrium state it inevitably contains discontinuities. TN final state the fields at equilibrium as long as the diffusivity
results in spontaneous reconnection, because no externanishes exactly. However, in the spirit of maintaining an
forces are involved; and in the cases we shall examine, thalready existing tradition, we retain this terminology.
result is that extraction of all of the available free energy As a result of relaxation, the magnetic field will reach an
becomes possible. equilibrium state. In two dimensionB,=d,A, By=—d,A,

Finally, we note that an important aspect of this problemand the fluxA obeys in equilibrium the equation
relates to the fact that there is a direct correspondence be-
tween magnetostatic equilibria and steady Euler flows, as 4 dP(A) )
pointed out by Moffat{8]; this problem is therefore closely dA '

A. The idea of topological nonequilibrium
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FIG. 1. Sketch of the typé- topology configuration: closed
nested magnetic-field lines. The dashed line here, as in all the fig-
ures below, corresponds to a field line with vanishing magnetic-
field strength.

whereP=p+ B?/(Sw), p=p(A), andB,=B,(A); see, e.g.,
[12]. As an aside, we note that if the pressyrecan be
neglected, then this equilibrium is force-free; this may occur
in specific applications such as in the solar corona. In addi-
tion, the total pressurf [Eq. (1)] ought to substantially ex- L

ceed the transverse magnetic eneBgy- B§ in order to jus- -0.5 0.0 0.5
tify the incompressibility assumption for the evolution to this X
equilibrium state. FIG. 2. Ellipse-shaped configuration placed between two hori-

Equation(1) is trivially satisfied in the one-dimensional ontal magnetic walls; the initial configuration was generated by
case. To start with, suppose thatis a function ofx only,  considering two families ofparametri¢ curves, i.e., straight lines
corresponding to straight field lines parallel to thaxis. An and ellipses, and joining them as shown in pa@agl As a result of
initial arbitrary distribution is generally not at equilibrium. evolution of the configuration shown in parfe), the field evolves
However, after relaxation, the field reaches the well-knownsuch that it is pushed to the walls to form discontinuities, as shown
equilibrium in panel(b). Dashed lines correspond By = 0. Both panels present

results of numerical simulations, but only selected field lines are

+P(x)=const, @ depicted for illustrative purposes.

By(x)?
8w
we allowed for nonvanishing diffusion, then such a configu-
automatically satisfying Eq1). The same is true for axisym- ration would not settle down untiall magnetic lines are
metric configurations, wheA=A(r), and the field consists reconnected, and the bubble seen in Fig. 2 disappears en-
of concentric circles. tirely.

Going to two dimensions complicates the problem consid- It is useful to expand slightly on the astrophysical rel-
erably. Consider first a configuration with closed nested fielcevance of this case. Our point is that “cas&shown in Fig.
lines, so thatA(x,y) has one maximum{minimum). The 2(a) can be regarded as an abstraction of a commonly ex-
configuration is depicted in Fig. 1, and we will refer to it pected field configuration in the solar atmosphere: Consider
below as “caseA.” Of course, the axisymmetric configura- the emergence of a magnetic flux tube from the solar interior
tion is topologically accessible from this configuration, andto the corona, where it enters a highly conducting medium
therefore it can reach equilibrium. The question, however, islready suffused by preexisting magnetic fields. If one ab-
whether this equilibrium is unique. stracts such an emerging flux tube as a rising cylinder, then

If there exists a magnetostatic equilibrium with tyfe- the expected field topology in planes perpendicular to the
field topology with essentially arbitrary field line geometry, tube axis should be similar to ca8e The nested closed field
e.g., with elliptic field lines, as in Fig. 1, then we would lines in such planes then represent the toroidal field compo-
expect an arbitrary typA-configuration to relax to this equi- nent of the emerging flux tube; and the magnetic “walls”
librium without dramatic changes in its geometry. However,shown in Fig. 2a) represent the projections in such planes of
suppose this equilibrium exists only in axisymmetric form,the magnetic fields of the surrounding magnetized coronal
i.e., can only be realized with concentfiieeld line) circles;  plasma.
then, if this configuration were placed between magnetic The second type of field topology we consider below is
“walls” (such as regions of strong magnetic fields in thewhat we call typeB; this more complicated topology is a
solar corona, or solar wingas in Fig. 2a), we would expect  “rosette structure”[Fig. 3(@], which has been investigated
the formation of discontinuitiegbecause it would not be experimentally[13]. In terms of the flux functionA(x,y),
possible to evolve to the equilibrium statéurthermore, if  this configuration consists of two maxima, e.g., two “moun-
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FIG. 3. Simulations for théinitially continuous rosette struc-
ture, as depicted in panéd). As a result of the relaxation, this
configuration evolves into a field containing a discontinuity be-
tween the two magnetic islands, as shown in pabgl The pres-
ence of the external zero lindashed lingis vital for TN.

0.0l o).

tains,” surrounded by a pedestal, i.e., two magnetic islands  0-0 0.2
surrounded by closed magnetic-field lines going around the
two islands; the field vanishes outside the zero line. If the FIG. 4. Two examples of field configurations which share the
typeB topology cannot exist in smooth equilibrium, then afield topology of the two cases\(andB) we are studying, which
current sheet develops, resulting in efficient reconnection ofio not have any simple symmetries, but are nevertheless smooth
field lines until all field lines of the islands are reconnected equilibria.(a) Type A (marked by the thick ling (b) type B (rosette
and eventually only one island remains, of the topology ofstructure, marked by a thick line
the typeA. In contrast, if this kind of topology does exist in
smooth equilibrium, then nothing dramatic would happendepicted in Fig. 48), which has the same topology of field
and the configuration would relax to this equilibrium without lines as depicted in Fig. 1. This asymmetric field is at equi-
any discontinuities. The astrophysical context in which thislibrium, so that the general answer to the question of
type of configuration may be created is similar to that justwhether, say, elliptic configurations of the form shown in
described above: consider the emergence of two adjacefig. 1 can be at equilibrium, is affirmative. An analogous
twisted solar flux tubes into a nonmagnetized ambient coeonstruction can be carried our for the topology of tén
rona; again, the field structure in a cross section perpendicuhis case, the solution of E¢l) can be constructed as
lar to the tube axes will appear as shown in Fig)3Thus,
in both case®\ andB, we are dealing with the generic case e ()
of bounded magnetic flux systerti., systems of magnetic- A=, Aelc xFikyly
field lines which lie within a finite bounding surface on n
which the field vanishgswhich can be regarded as abstrac-
tions of, for example, isolated flux tubes emerging into thewhere «{)?+ (k{")2=const (see, e.g.[16,7). This ex-
highly conductive solar corona. ample is depicted in Fig.(8); the rosette structure shown is
Generally, finding TN states is far from trivial. To illus- at equilibrium without any discontinuities.
trate, let us return to the typ&-topology. The axisymmetric The situation changes if a zero lifa line whereB,
equilibrium solution isnot unique. For example, one can =0, B, ={B,,B,}, and generally3,#0) is present, such as
construct a solution to Ed1), the dashed line shown in Fig. 1 for the typeand in Fig. 3
for the typeB field topology. The zero line possesses two
A(X,y)=sinkxsinky, remarkable properties. First, the magnetic field remains zero

X
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on this line in the presence of ICV flow. Thus, if we write the  Note that one can simply produce artificial discontinuities,
ideal induction equation in the form but these are irrelevant to our discussion. To illustrate, sup-
pose that we place superconductive walls at the locations of
dB the thick lines in both panels of Fig. 4. In that case, the
E:(B' Vv, configurations will be at equilibriunfor both typeA and B
topologies, and the field will be smooth everywhere except
which in 2D reads at the boundarieswhere the field jumps from a finite value
just outside the walls to zero at the walls in order to meet the
dB, dB, boundary condition of zero field within the superconducting
<t - B VIV =0, (3 walls). This type of discontinuity is irrelevant to the astro-
physical problem we are aiming at, and we therefore do not

it is easy to see that because the left-hand side describ&éscuss it any further. . _
transport of any fluid elemertin particular, of the zero line ~_ Thus, the ideally conductive flow does allow magnetic-
by the motion, and because the right-hand side correspon(ﬁ_@'d discontinuities an_d discontinuities in current d_lstrlbu-
to change of the field along the Lagrangian trajecitanyd as tions. However, studying the current sheet formauo_n, we
the right-hand side vanishes on the zero lirtais equation  Should not allow them to be present at the very beginning,
will preserve the propert, =0 on the zero line. that is, .the. _|n|t|al c_onﬁguranon shpuld not contain magnetic
Second, if the zero line has a constdalong the ling Q|scont|ng|t|e§. This kind of ponflgurgt!on, with zero line,
curvature, e.g., is a straight line or a circle, and if the field is-€-» localized in space, and with nontrivial symmetry, can be
also analytical, then the entire configuration will have the€asily constructed analytically. For example,
same geometry as the zero line. In other words, if the zero . :
line is g straight line, then all other field lines are straight as A(Xy) = (sink,x S|nkyy)2, )
well; alternatively, if the zero line is a circle, then the ana-
lytical equilibrium configuration consists of concentric
circles. The proof is easily constructed by expandi{g,y)
in the vicinity of the zero lind12]. Note, however, that the
constant curvature zero line is a special cadthough it can
be regarded as a representation of the emergence of magnetic e . 3
flux on, for example, the solar surface, in which geometri- ADGY) = (sinkcsinkyy)®, ®
cally symmetric flux bundles straddle the separating “neutral

line”); in g_eneral, the zero line is arbitrary in _shape, a;‘\Sas the jump of the current is allowed even at the beginning of
shown in Figs. 1-3. Nevertheless, we may conjecture thghe rocess the configuratiof) is satisfactory for our

the zero line imposes a severe constraint on the geometr%éeds_ The topology of both Eqg) and (5) coincides with
That is, we conjecture that the existence of this line results Bhe A type, depicted in Fig. 1 or Fig.(d). One can apply

unique(smooth solutions of Eq(1) in the form of magnetic- continuous deformations in the plane to this potential

field lines with con_stant purvqtun[é.Z]. . . . A(X,y), and still retain the desired property th&t0 on the
One of the considerations in favor of this conjecture is asooundary{see Eq(3)]. It is easy to check that neither E@)

f.OHOWS.' Without IOSE of generalityA=0 outside the CON" " hor Eq.(5) satisfies the equilibrium conditiofi). The non-
figuration, and thus\=0 on the boundarfwhose shape is as yia| question is, however, if any if these transformations

yet unspecifie corresponding to the Dirichlet problem for (except the axisymmetric ohean be at equilibrium.
Ed. (1). On the other hand, becauBg=B,=0 on the same

boundary, we have),A=0, corresponding to a Neumann
problem. The problem is thus overconstrained; and one
would expect this to lead to degeneracy of the solution. That One of the powerful ways to study the formation of cur-
is, these specific boundary conditions are expected to restriegént sheets is via numerical simulation. However, in numeri-
the shape of the boundary itself, and thus in turn to restrictal simulations the Lundquist numbe8=c,L/7 (ca the

the topology of possible equilibria. Although the boundaryAlfvén speed and. the characteristic lengthwhich is criti-
conditions are specified, and the problem is thus rigorouslyal for this problem, is far below that corresponding to val-
formulated, the above statement regarding the overcorues encountered in natural systems, viz., under astrophysical
strained nature of our problem nevertheless has not beeaonditions[3]. When S is not sufficiently large, the separa-
shown to be useful in constructing a formal mathematication between typical reconnection times and typical fluid dy-
proof concerning the geometry of the configuration in thenamical times may not be large; it is therefore difficult to
presence of a zero line. Formally, it is easier to discard thénterpret realistic resistive calculations in the context of a
TN for a given topology by direct construction of a solution problem in which current sheet formation is to occur without
with needed properties. Generally, it is not clear at all how tatopological changes. On the other hand, numerical schemes
construct a formal proof that the only solution of Etj) with  which attempt to circumvent this problem by solving the
boundary conditiofB, =0 for the typeA topology is unique, ideal MHD equations suffer from the difficulty that such
and axisymmetric, thus defining the shape of the boundargchemes may be subject to numerical instability, so that it
itself. It is even less clear how to prove that there is nobecomes difficult to distinguish between numerical artifact
smooth solution for the typB-topology, assuming that this and physically correct current sheet formation. When discon-
statement is true. tinuities in the magnetic field appear, traditional numerical

for Osx=w/k,, Osys=m/ky,, andA(x,y)=0 outside this
domain. ClearlyA(x,y)=0 andB,=B,=0 on the bound-
ary, although the current experiences a jump. In order to
avoid this, consider

hen the current also goes to zero on the boundary. However,

B. Description of the solution method
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MHD codes tend to either break down or to introduce a smalforce at each time step onto the homogeneous grid used by
amount of resistivity to broaden the current shdststhat, the momentum equatiof®); similarly, we use quadratic in-
for example, their width is larger than a mesh cdh certain  terpolation from the momentum equation mesh to evaluate
situations, the symmetry of the problem can be exploited tdhe velocity field on the Lagrangian mesh. In order to mini-
study the approach to the ideal solution, i®0, see, e.g., mize interpolation errors, we fix the number of field lines
[14]. However, typical simulations actually add some such that every Eulerian grid domain is pierced by at least a
amount of numerical resistivity, as 0], so that numerical few field lines throughout the calculation. Note here that in-
solutions of the ideal induction equation correspond to soluterpolation errors do lead to inaccuracies in the solution of
tions of that equation with an added effective diffusivity. In the flow and magnetic fields, but by construction cannot lead
studies of reconnection it is known that the specification ofto changes in the magnetic-field topology. Note also that we
boundary conditions on the magnetic field and velocityhave checked for convergence of the solutions as the spatial
(which specify the rate at which magnetic field and plasma igesolution of our calculation is increased; our conclusion is
brought into the reconnection layemay affect the rate of that the results presented here do not depend on grid resolu-
reconnection. In our simulations, we study spontaneous fortion. Our solution corresponds to the limjt-0, in the sense
mation of singularities by isolating the flux system from thethat the topology is strictly conserved, but with finite viscos-
boundaries. We surround our flux bundle byteansversg ity; thus, the computational scheme we use forces the relax-
field-free region, and we place the boundaries far away fronation to be due solely to viscous damping, and as a conse-
the bundle, thereby minimizing the effect of the boundaryquence, the field relaxes to an equilibrium state. Our
conditions on the formation of the current sheets. approach has the dual virtues that the boundary conditions

We address this issue as a relaxation problem in théor the magnetic field do not need to be specified, and that
framework of ICV flows. Our approach involves a direct the field topology is preserved; it is therefore appropriate for
numerical simulation of ICV flows, i.e., solving the set of the study of TN.
equationg3) and the momentum equation, If the viscosity is large, then Eqé3)—(6) describe mono-
tonic relaxation to equilibrium. We can estimate the relax-
ation time as follows: from Eq(6) we find thatv~c,§L/v
=caS,, whereS,=c,L/v. This viscous regime is realized if

(6) S,<1. The relaxation time is theh,~L/v=7,/S,, with
Ta=L/cu. In the opposite limiting cases,>1, the system

with V-v=0 [15]. We use a Lagrangian approach to solveundergoegstrong Alfvén oscillations ¢~c,), with a pe-
the induction equatiofB), as in[17,5]. More specifically, the riod TA, decaying on a viscous time~ L2/p= TAS,. These
magnetic field inside the region of interest is represented byyo cases can be jointly described by an interpolation for-
a large number of field lines; the evolution of the field linesmula,
is then followed using the exact Lundquist solution, i.e.,
knowing the initial strength of the magnetic field on a fluid t,=7A(S,+1/S,),
element connecting two nearby points on a field line, the
_fin_al strength is proportior_lal to the length of the segment, agom which it follows that the relaxation time is large for
it is stretched by the motions. We assume for all cases thgfoh imiting casesin terms ofr,). Thus, optimal relaxation
the magnetic field vanishes on the outermost field lihe 4 eqyilibrium occurs foiS,~O(1): in the simulations, we
dashed curves shown in the figureshe number of field 5o the valus,=S5. It is important thas, not be too large:
lines which fill the domain is chosen so that the subsequeny, important constraint on the value 8f is that the simu-

field evolution can be followed without leaving gaps in the 5400 remain stable. This constraint is not mesjfis too

final state, i.e., we determine the number of initial flelo_l “neslarge; because the two dynamical equations are solved in

Sdifferent coordinate$Eq. (3) in Lagrangian, and Eq(6) in
'Eulerian coordinatds errors arise from the interpolation
from one coordinate system to the other, and therefore the
calculations make sense only if these errors are damped suf-
ficiently by viscosity.

dv_ av V_1V 1VBBV2
H—E+(v~ )V——; p+m{ XB}XB+ vV,

this point further immediately below. As an important aside
we note that the initial magnetic field is smooth, implying
that the current systenj(x,y), which is defined by Am-
pere’s law

4
VXB= ?J, I1l. DESCRIPTION OF THE RESULTS

We conducted two series of numerical experiments for

is smooth as well, i.e., there are no current sheets initially. caseA. In the first series, we consider the relaxation of this

The momentum equatioff), in contrast, is solved using type of topology without any external field, as depicted in
standard finite difference techniques, with finite viscosity.Fig. 1. We explored different initial shapes of the field lines,
However, the requirement of coupling the magnetic-fieldincluding ellipselike, diamondlike, and other similar configu-
evolution to the momentum equation does lead to a complirations. In addition, for a fixed shape, we explored different
cation for computing the Lorentz force. The key issue is thadistributions of the flux functio®A(x,y), i.e., different func-
the momentum equation requires the Lorentz force to beéional dependenceA(s), wheres labels the field lines. The
evaluated on a homogeneous spatial grid, while theesults are always the same: the field ends up in an axially
magnetic-field evolution is given in Lagrangian space. Wesymmetric state, provided the field vanishes on the outermost
resolve this issue bfguadratically interpolating the Lorentz field line.
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FIG. 5. Profiles of the current corresponding t@) the topology of Fig. &), and to(b) Fig. 3(b) [the field line configurations of Figs.
2(b) and 3b) are reproduced at the bottoms(af and(b), respectively. The current sheets are represented by negative currents. Due to the
presence of an external zero line, the total current is zero, and therefore strong and peaked negative current is compensated by a spatially
distributed positive current. Note that in pai@l, the current corresponding to the external field of the magnetic walls changes sign, because
each wall contains two zero lines.

In another set of experiments, this same configuratiorproperty of the initially smooth state, rather than being
(caseA) is placed between magnetic walls, as in Fig)2in  forced by external means.
this case, the system always evolves to create discontinuities, Consider now the typ&- configurations. We again con-
as in Fig. Zb), where the field lines are taken from one of ducted two series of experiments. In the first series of nu-
our simulation runs. We see that as the “bubble” evolves, itmerical experiments, we studied different kinds of initial
attempts to become axisymmetric, but as it does so, twatates, with different initial field line shapes and with differ-
discontinuities begin to form, as depicted in Figb2 see  ent distributionsA(s); in all cases, we again required that the
also Fig. %a). It is interesting to note that, for some initial outermost line must be a zero line, as shown in Fig. 3. We
conditions, acurrent pointis formed, rather than a current found for the typeB configuration that a field discontinuity
sheet(or a line in two dimensions suggesting that finite always appeared, as in Figi3 (which is taken from one of
conductivity could presumably result in fast reconnection;our simulationg no matter what the initial distribution &,
that is, according to the Sweet-Parker mechar(isee, e.g., or what kind of analytical representation of the initial field
[4]), the reconnection ratey~ 1//, where/ is the length of  lines we used.
the current sheet, so that a short current sheet speeds up theln the second set of experiments, we simulated the evolu-
reconnection(In the classical Sweet-Parker mechanisfn, tion of a magnetic field with a different number of field lines.
=L, andvg=c,/S"2) The issue is as follows: The magnetic-field gradientxat

It is crucial to note here that the evolution we just de-=0 increases during the evolution, so that the curr&ht,
scribed is not forced by the walls; thus, the field and fluid X B, approaches @& function (Fig. 5. It is not possible to
near the wallgi.e., on the wall side of the zero linebave  observe this tangential discontinuity because in the simula-
the equilibrium property(2). To see this, note that on the tions the field is described via a finitalbeit a very large
zero line, the total pressure is continuous. Thus, we couléhumber of field lineqrecall[18]). Our hypothesis is that in
replace the initial elliptical field configuration(the the limit of an infinite number of field linedl—«, the cur-
“bubble™) lying between the two zero lines with a field-free rent atx=0 tends to infinity; in order to test this hypothesis,
region whose gas pressure exactly balances the total pressuve increased the numbét (recall [19]) in a succession of
on the wall side of the zero lines. The resulting configurationsimulations that were otherwise identical. According to our
is clearly in equilibrium, and makes clear that the walls dohypothesis, we expected the current to grow roughly As 1/
not push the bubble, i.e., that the evolution of the bubble isvhereA is the closest distance between thgoint and the
entirely driven by the fact that it is not in equilibrium. Thus, nearest field line; the experiments confirmed this
it is as the bubble tries to become axisymmetric, and pushesxpectation.
back the walls, that the two discontinuities are formed. In
principle, if the bubble could reach equilibrium with ellipse- IV. CONCLUSION
shaped field lines as in Fig.(&, then it would not even
interact with the walls, and the equilibrium of the whole  The fundamental result emerging from our simulations is
configuration would be smooth. The field evolution to TN that the vanishing magnetic field on the outermost field line
here described, i.e., evolution from an initially smooth stateémposes strict constraints on the geometry of equilibrium:
to a state containing a singularity, is therefore an intrinsicThe typeA topology can be at equilibrium only if it is axi-
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symmetric; and therefore, if constrained by external walls, ireconnection rate 4 scales asa/S%, where« is a small

is at TN. Similarly, the typeB rosette structure develops power,a~ O(0.1)[21]. If confirmed, it would imply that the

discontinuities, but only in the presence of an external zergeconnection is fast enough to satisfy the obser(sada)

line. The presence of zero lines is thus an important aspect @onstraints on reconnection timegRecall that while the

topological nonequilibria. Sweet-Parker reconnection time for typical parameters cor-
Finally, we comment briefly on the applicability of these responding to the solar corona is about three years, the time

results to astrophysical situations. Observations of the solaforresponding tw 4= c,/S>! is only 30 min, which is com-

atmospher¢20] commonly show topologically unconnected parable to the energy release time scale for large solar flares,

magnetic flux systems which are seen to inter@6t., related to the so-called “long-enduring” everj].) There-

emerging flux loops In such circumstances, in which one fore, the two topologies depicted in Figs. 2 and 3 may be

expects to encounter small but finite reSiStiVity, these ﬂUXregarded as generic examp|es of “fast” reconnection and

systems are initially unlinked, but as they are pushed toactivity in magnetically active astrophysical systems.

gether(and begin to reconnegtflux linkage is expected to

occur and to lead to a field topology analogous to that de-
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